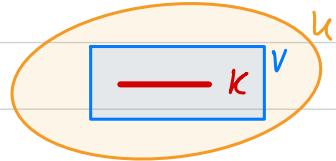


Math 565: Functional Analysis

Lecture 8

Locally compact Hausdorff facts. A Hausdorff top. space X is called locally compact if every point admits a compact neighbourhood. The following are key facts we will use for a lctH X . Let K be compact and $U \supseteq K$ be open.



- (a) There is open $V \subseteq X$ s.t. $K \subseteq V \subseteq \bar{V} \subseteq U$ and \bar{V} is compact.
- (b) Urysohn for lctH: $\exists f \in C_c(X)$ with $0 \leq f \leq 1$ s.t. $f|_K \equiv 1$ and $f|_{U^c} \equiv 0$.
- (c) Partition of unity: If $\{U_i\}_{i \in \mathbb{N}}$ is an open cover of K then $\{f_i\}_{i \in \mathbb{N}} \subseteq C_c(X, [0, 1])$ with $\sum_{i \in \mathbb{N}} f_i|_K = 1$ and $\text{supp } f_i \subseteq U_i$ for each $i \in \mathbb{N}$. This family $\{f_i\}_{i \in \mathbb{N}}$ is called a partition of unity (i.e. the constant 1 function) on K subordinate to $\{U_i\}_{i \in \mathbb{N}}$.

We now try to capture the closure of $C_c(X)$ inside $BC(X)$ with uniform norm. Let

$$C_0(X) := \{f \in BC(X) : f \text{ vanishes outside compact sets}\},$$

where we say that $f \in C(X)$ vanishes outside compact sets (or vanishes at ∞) if $\forall \varepsilon > 0$ the set $\{|f| \geq \varepsilon\}$ is compact.

Remark on the name. For lctH spaces, $C_0(X)$ is exactly the set of functions $f \in C(X)$ which admit an extension to a continuous function \bar{f} on the one-point compactification $\bar{X} := X \cup \{\infty\}$ such that $\bar{f}(\infty) = 0$, hence the name vanishing at ∞ .

Prop. For any top. space X , $\overline{C_c(X)} \subseteq C_0(X)$; and if X is lctH, then $\overline{C_c(X)} = C_0(X)$.

Proof. Let $f_n \in C_c(X)$ and $f_n \rightarrow f$, so $f \in BC(X)$. Let $\varepsilon > 0$, so there is $n \in \mathbb{N}$ with $\|f_n - f\|_u < \varepsilon$, in particular, $|f|_{K_n} < \varepsilon$ where $K := \text{supp } f_n$, so $\{|f| \geq \varepsilon\} \subseteq K$, hence $f \in C_0(X)$.

Now if X is lctH and $f \in C_0(X)$, take $\varepsilon > 0$. Then $K := \{f \geq \frac{\varepsilon}{2}\}$ is compact, so by Fact (b), there is $g \in C_c(X)$ with $1_K \leq g \leq 1$, in particular, $g|_K \equiv 1$. Then $f \cdot g \in C_c(X)$ and $(f \cdot g)|_K = f|_K$ so $\|f - f \cdot g\|_u \leq \|f\|_{K^c} + \|(f \cdot g)|_{K^c}\| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$. QED

Corollary. $C_c(X)^* \cong C_0(X)^*$, i.e. they are isometrically isometry.

Proof. More general statement is in HW. \square

Def. Let X be a top. space. Call an (unsigned) Borel measure μ on X a **Radon measure** if it is finite on compact sets, outer regular on all Borel $B \subseteq X$, i.e.

$$\mu(B) = \inf \{ \mu(U) : U \supseteq B \text{ open} \},$$

and **tight** on open sets $U \subseteq X$, i.e.

$$\mu(U) = \sup \{ \mu(K) : K \subseteq U \text{ compact} \}.$$

Examples. Haar measures on lch groups are Radon measures. In particular, the Lebesgue measure on \mathbb{R}^d and Bernoulli($\frac{1}{2}$) measure on $(\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}} = 2^{\mathbb{N}}$ are Radon.

Theorem. If X is 2nd cbl and either Polish (2nd cbl, admitting a complete metric) or lch then all finite Borel measures on X are Radon.

Proof. We proved for Polish last semester and for lch in HW. \square

Facts. (a) Regularity, tightness (hence being Radon) are measure equivalence invariants for finite Borel measures on X , i.e. if μ, ν are finite Borel measures on X and $\mu \sim \nu$, then μ is regular/tight/Radon iff ν is. (HW)

(b) If X is lch and μ is a Radon measure on X then $C_c(X) \subseteq L^p(X, \mu)$ is dense in the L^p norm, for all $1 \leq p < \infty$. (HW)

Def. A (finite) complex Borel measure μ on a top. space X is called **Radon** if $|\mu|$ is Radon.

Prop. μ is Radon (i.e. $|\mu|$ is Radon) $\Leftrightarrow \mu_i$ is Radon for all $0 \leq i \leq 4$, where $\mu = (\mu_0 - \mu_1) + i(\mu_2 - \mu_3)$ s.t. $\mu_0 \perp \mu_1$, $\mu_2 \perp \mu_3$ are unsigned measures.

Proof. Let $\mu = \mu_0 + \mu_1 + \mu_2 + \mu_3$. It is enough to show that $|\mu| \sim \mu$ because then $|\mu|$ Radon

$\Leftrightarrow \mu$ Radon $\Leftrightarrow \forall i, p_i$ Radon. For $|p| \sim \mu$, it is clear that $|p| \ll \mu$ since $(*) |p|(B) = \int \frac{dP}{d\mu} |d\mu|$, so suffices to show that $|p| \gg |Re p| = p_0 + p_1$ and $|p| \gg |Im p| = p_2 + p_3$. By abbreviate $(*)$ by $d|p| = \left| \frac{dp}{d\mu} \right| d\mu$. Now observe:

$$d|p| = \left| \frac{dp}{d\mu} \right| d\mu \geq \left| Re \frac{dp}{d\mu} \right| d\mu = \left| \frac{dRe p}{d\mu} \right| d\mu = \left| \frac{dp_0}{d\mu} - \frac{dp_1}{d\mu} \right| d\mu = \left| \frac{dp_0}{d\mu} + \frac{dp_1}{d\mu} \right| d\mu = d|p_0| + d|p_1|,$$

so $p \gg p_0 + p_1$. Similarly, $p \gg p_2 + p_3$. QED

Let $RM_c(X)$ denote the space of all (finite) complex Radon measures on a top-space X .
 \downarrow Borel sets of X

Fact. $RM_c(X) \subset M_c(X, \mathcal{B}(X))$ is a closed subspace of the Banach space $M_c(X, \mathcal{B}(X))$, hence a Banach space itself with the total variation norm $\|p\|_{TV}$.

Proof. Easy to prove directly using the absolutely convergent series criterion, but also follows from the following theorem. □

Riesz representation theorem. For an LCH space X , $C_0(X, \mathbb{C})^* \cong RM_c(X)$, more precisely, the map $f \mapsto I_f : RM_c(X) \rightarrow C_0(X, \mathbb{C})^*$ is an isometric isomorphism.

We will prove this for the rest of this section.

achieved by $\Psi := \overline{\operatorname{sgn} \frac{dp}{d\mu}}$

Proof of isometry. Fix $p \in RM_c(X)$. Recall that $\|p\|_{TV} := |p|(X) = \sup_{|\Psi| \leq 1} \int \Psi d|p|$, where Ψ ranges over Borel functions. On the other hand,

$$\|I_p\| = \sup_{|f| \leq 1} |I_p(f)| = \sup_{|f| \leq 1} \left| \int f d|p| \right|, \text{ where } f \text{ ranges over } C_c(X), \text{ so } \|I_p\| \leq \|p\|_{TV}. \text{ To show equality, fix a Borel } |\Psi| \leq 1 \text{ with } \left| \int \Psi d|p| \right| \approx_{\epsilon/2} \|p\|_{TV}.$$

But $\Psi \in L^1(X, |p|)$ since $|\Psi| \leq 1$ and $|p|$ is finite, hence $\exists f \in C_c(X)$ with $\|\Psi - f\|_1 \leq \frac{\epsilon}{2}$, because $C_c(X)$ is dense in $L^1(X, |p|)$. Then $\left| \int f d|p| - \int \Psi d|p| \right| \leq \int |f - \Psi| d|p| \leq \frac{\epsilon}{2}$, hence $\left| \int f d|p| \right| \approx_{\epsilon/2} \left| \int \Psi d|p| \right| \approx_{\epsilon/2} \|p\|_{TV}$, so $\|I_p\| = \|p\|_{TV}$. QED

It "remains" to prove the surjectivity of $f \mapsto I_f$. Fix $\Gamma \in C_0(X)^*$. Note that for all $f \in C_c(X)$,

$$I(f) = I(Rf + iIf) = I(Rf) + iI(If),$$

so I is determined by its values on $C_0(X, \mathbb{R})$, i.e. $C_0(X, \mathbb{C}) \cong_{\mathbb{R}} C_0(X, \mathbb{R}) \times C_0(X, \mathbb{R})$. So let $J := I|_{C_0(X, \mathbb{R})}$ and $J = ReJ + iImJ$, where ReJ and ImJ are real-linear bdd functionals on $C_0(X, \mathbb{R})$. This reduces to proving

Real Riesz representation theorem. For an lctH space X , $C_0(X, \mathbb{R})^* \cong RM_{\mathbb{R}}(X)$, more precisely, the map $p \mapsto I_p : RM_{\mathbb{R}}(X) \rightarrow C_0(X, \mathbb{R})^*$ is an isometric isometry.

Indeed, we would then apply this to ReJ and ImJ , obtaining $p_r, p_i \in RM_{\mathbb{R}}(X)$ such that $ReJ = I_p_r$ and $ImJ = I_p_i$. Then $p := p_r + ip_i$ is as desired: note that it is Radon by the Proposition above since p_r and p_i are Radon. Finally, $J = I_{p_r} + iI_{p_i} = I_p$, so $I = I_p$ by the uniqueness of linear extension of J to $C_0(X, \mathbb{C})$.